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We have recently presented two types of the hybrid boundary node methods, the singular
hybrid boundary node method (SHBNM) and the regular hybrid boundary node method
(RHBNM). Both the methods combine a modified functional with the moving least squares
(MLS) approximation, and are truly meshless, boundary-only methods. SHBNM and
RHBNM formulations are developed for solving 3-D potential problems. Numerical
examples are computed and the results obtained are discussed. Emphasis is placed on
studying parameters which influence the performances of them. Their convergence rates
and applicability to thin structures are investigated.
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1. Introduction

One of the most time-consuming parts of numerical
analyses by domain-type methods is the discretization of
domain of interest. If the domain is of complex geometry,

the task of an implementation of FEM is usually challenging.

The BEM-based models partially alleviate the problem as
the discretization of only boundary surface is required.
However, still in many cases it may be difficult and
cumbersome to prepare the necessary input data for
elements. Combining the BEM with the meshless techniques
may be an attractive way for avoiding the mesh generation
requirements. Recently, several meshless methods for
boundary-only analysis have been proposed in the literature.
One possibility in this approach is the boundary node
method (BNM) [1].

The BNM is a combined boundary integral/meshless
approach for boundary only analysis of partial differential
equations. In the BNM, given a scattered set of points,
meshless interpolation functions are constructed by using a
moving least-squares approach [2], so that no boundary
mesh is needed for interpolation of variables. However, for
boundary integration, they have to construct a background
boundary cells structure.

In order not to create the background cells and hence
achieve a truly meshless method, we have developed two
meshless methods: the singular hybrid boundary node
method (SHBNM) [3] and the regular hybrid boundary node
method (RHBNM) [4]. Both the methods use local weak
forms over a local sub-domain and shape functions from the
MLS approximation, and are truly meshless, as no
‘boundary element mesh’ is generated either for the variable
interpolation or for the boundary integration. All integrals
can be easily evaluated over regularly shaped local boundary
regions.

The SHBNM was first proposed. However, the SHBNM
has a drawback of serious “boundary layer effect”, i.e. the
accuracy of results in the vicinity of the boundary is very
sensitive to the proximity of the interior points to the
boundary. To avoid this drawback, we then proposed the
RHBNM. In contrast to SHBNM and other hybrid boundary
element models [5], the fundamental solutions are used in
the RHBNM with their source points located outside the
domain rather than on the boundary. Numerical
computations show that results from the RHBNM are not
sensitive to the proximity of the interior points to the
boundary and very high accuracy can be achieved even
when a small number of boundary nodes are used. However,
the outside arrangement of the source points of the
fundamental solution also has some disadvantages. The
advantages and disadvantages of these two meshless
methods have not been discussed in detail in the published
papers. So far, their applications were very limited. Hence,
further research work about SHBNM and RHBNM are
necessary.

In this paper, SHBNM and RHBNM are examined and
compared in detail. Their formulations and implementations
are first presented for 3-D potential problems. Then,
parameters that influence the performance of them are
studied through numerical examples.

2. Local weak form for a hybrid model

The potential problem in three dimensions govemed by
Laplace’s equation with boundary conditions is written as
u,=0, VxeQ

u=#, Vxel, M

un=q=q, Vxel
where the domain Q is enclosed by ' =T, +I, #and g
are the prescribed potential and the normal flux, respectively,



on the boundary parts T, and r,: and » is the outward

normal direction to the boundary I', with components n;, i
=1,2,3.

The hybrid boundary node method proposed in this paper
is based on a modified variational principle. The functions
assumed to be independent are:

— potential field in the domain, » ;
— boundary potential field, 7 ;
— boundary normal flux, g .

is defined

The corresponding variational functional 17 ,

as follows:
1 - - —
n,,= I;IEI'-'I'-'dQ - L_q(u -yl - Ir‘ gudr (2)
where, the boundary potential 7 satisfies the essential
boundary condition, i.e.,iz =% on T,.
becomes

AB
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The variation of []
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The vanishing of 411, for arbitrary variations éu in Q,

du and & on I', with & =0 on I, gives the following

Euler equations:

u,=0, in Q
u-u=0, on T 4)
g-g=0, on T
g-q=0, on r,

Consequently the solution of the problem is now given in

terms of the functions w, # and g, which makes 41,

stationary.
With the vanishing of 11 ,,,

equivalent integral equations:

we also have the following

[ (a-@ouar- | u, sud =0 Q)
jr(u—ﬁ)a‘c;drzo (6)
[ (G-gsadr =0 )

If we impose the flux boundary condition, g =7, just in

the same way as the essential boundary condition after the

matrices have been computed, the Eq. (7) holds. So it can be

omitted temporarily in the following development.
Equations (5) and (6) hold for any sub-domain ¢ and its

boundary 8Q . 8Q consists of two parts, r, and L, (see
Figure 1), where I is a portion of I'; L, is inside Q .

Following the procedure in Reference [6], we use the
following weak forms for a sub-domain ¢ and its

boundary I, and L, to replace Eqs. (5) and (6):
.[r"’_l (q—G)vdl — Lz, u,vdQ =0 ®)

.[r‘ " (u—uywdl'=10 9)

where v is a test function. It should be noted further that the
above equations hold irrespective of the size and the shape
of O and its boundary g3 . This is an important

observation which forms the basis of the present formulation.

We now deliberately choose a simple regular shape for ) .

The most regular shape for a sub-domain in 3D space is
sphere. In the present paper, we choose Q as the

intersection of the domain Q and a sphere centered at a
boundary node s, (see Figure 1).

Figure 1. The local
domain centered at a
node s; and the source
point  corresponding
to a node s,.

In Egs. (8) and (9), # and g on T, are expressed by

2()= 3.0, ()i,  5)= 3 0,(5)d, (10)

where®, (s) is the shape function of the MLS (see [4]), for
I, is a part of the globe boundary. However, # and § on L,
has not been defined yet. To solve this problem, we select v
such that all integrals over L, vanish. This can be easily

accomplished by using the weight function in the MLS
approximation for v, with the half-length of the major axis

d, of the support of the weight function being replaced by
the radius #; of the sub-domain @ , i.e.

exp[—(d, /¢, )2]"exp[_(’f; /e, ):]
1—exp[—(r, /¢,)*]
0, d, zr,

where d, is the distance between a point O, in the domain Q,
and the nodal point s;. Therefore, v vanishes on L, . Thus we

v,(Q)= o DSy 2y 11

obtain the local weak form as follows:
Bl bo - 12
Ir, (g—g)vdl' J-n. u,vdQ =0 (12)
jr (u - iiwdT=0 (13)

with the boundary integrations all restricted on the sub-
region [ .

2.1 Numerical implementation for SHBNM

In Egs. (12) and (13), we approximate # in the domain
with

NN
u =ZU,x, (14)
I=1
and hence
_3 9, (15)
q —§ 2n X,

where U; is the fundamental solution; x; are weight
parameters; NV is the total number of boundary nodes.
For 3-D potential problem, the fundamental solution is
el 1 (16)
4z r(O, F)
where O and P, are the field point and the source point
respectively. And P, is located on the boundary and
coincident with the node point s,.

1



As u is expressed by Eq. (14), the last integral on the left-
hand side in Eq. (12) vanishes if one excludes node s, at
which singularity occurs from the sub-domain Q . This

singularity will be considered when evaluating the boundary
integrals.

By substituting Egs. (10), (11), (14) and (15) into Eqs. (12)
and (13), and supposing that all nodes are on smooth
portions of I', we have

1 2 au, 2 .
T 3 L, v,(Q)x,dl = ,Z. L.d),(s)v',(Q)q,dl'

1al an

> J. U, (@x,dT =3 [ @, (s)v,(Q)i,dT
1=l ! I=1 :
a7

In the present formulation, the proper choice of the
integration boundary I, is particularly important for 3-D

problems. The theoretically ideal T, is chosen in such a way

that they cover the whole boundary of the body and does not
overlap each other. Unfortunately, this condition can not be
realized in 3-D case. However, from our computation in 2-D
case, the present formulation is expected to give acceptable
results in cases when the local regions I",, each of them

containing one node only, overlap each other, or the union
of all local regions T, does not cover the whole

boundary[3,7]. Therefore, in this paper, we use ellipse in the
parametric plane for the shape of the local regionsT" and

investigate the optimal size of T, .

Using the above equations for all nodes, we obtain the
following system of equations

Ux = H§ (18)
Vx =Hi 19
where
ou
Uy = [, =51, (0)dr

V= [, U, (Q)dr
H, = I,./(D/(S)"J(Q)dr
xT = [xl’xZ’""'xn]
‘iT = [‘ilv‘iz"" ’én]
a7 = [l“‘l,u“z’... ,ﬁ"]
and T/ is the local region T, corresponding to the node s,.
From Eq. (19) we have

x=V 'Hi (20)
Substituting Eq. (20) into (18), we have
UV 'Ha-HG=0 21

The evaluation of the matrix U is the most critical step in
this approach, as integrations of singular functions are
required. Accurate and appropriate numerical integration
schemes have to be used for different types of singularities
of the integrands. Since the main diagonal terms of matrix U
can be calculated by applying a special solution (e.g. a
constant field), however, the direct numerical evaluation of
hyper-singular integrals can be avoided.

For a well-posed problem, either & or § is known at each

node on the boundary. However, transformations between
u, and %, , g, and g, are necessary because the MLS

interpolants lack the delta function property of the usual
BEM shape functions. For the panels with specified
potential boundary conditions, #, is related to 7, by

N N

i, =Y Ry, =) R,i, (22)
J=l J=l

and for the panels with specified normal flux boundary
conditions, g, is related to g, by

N N
‘;1 = ZRUZiJ = ZRIJ‘TJ 23
J=1

J=|

where R, = [q> ,(s’ )]" (see Reference [6]).

Equation (21) can be solved in the same way as that in the
conventional BEM. Then, the unknown vector x is obtained
by Eq. (20). As can be seen, the present method is a truly
meshless one. No boundary elements are used for
interpolation nor integration purposes.

2.2 Numerical implementation for RHBNM

The numerical implementation for RHBNM is almost the
same as that for SHBNM, except that, to avoid singularities,
the source point P, of the fundamental solution is located
outside the domain and determined by

P, =s,+n(s,)-h-SF (24)
where h is the nearest distance between the neighbouring
nodes; n(s;) is the unit outward normal to the boundary at
node s; and SF is a scale factor. The scale factor, SF, plays
an important role in the performance of the RHBNM
method. Too small value for SF will lead to nearly singular
integrals and thus inaccurate results; On the other hand, too
large one will lead to an ill-conditioned system of algebraic
equations. The optimal value of SF will be suggested by
numerical computations.

As the source point P, of the fundamental solution is
located outside the domain, the last integral at the left hand
in Eq. (12) vanishes without excluding the node s; from the
sub-domain Q. Therefore, there is no singularity in the

matrices U and V at all. By rearranging Eqgs. (18) and (19),
we can have the following final equation to determine the
unknown vector x.

Ax=d (25)
where A and d are formed by merging U and V, Hii and
Hq according the known boundary conditions. For degrees

of freedom with specified potential boundary conditions,
Hi is selected for d, and its corresponding row of V is
selected for A; otherwise, Hq is selected for d, and its

corresponding row of U is selected for A.

The evaluation of the matrices U and V is much simpler in
RHBNM than SHBNM because it is singularity-free.
Furthermore, the inverse of V is also avoided.

3. Secondary results recovery

The secondary results recovery processes in SHBNM and
RHBNM are considerably different. In RHBNM, the
secondary results can be computed easily. After x being
obtained by solving Eq. (25), potential » and flux g at any
point inside domain Q or on boundary T can be evaluated
merely by Egs. (14) and (15) without further integrations.
Since u and ¢ on boundary T can be evaluated in the same



way as that inside domain, the unknowns § and u need not

to be obtained. However, in SHBNM, we cannot use Egs.
(14) and (15) to calculate # and ¢ on the boundary, due to
the singularities at the boundary. And if we evaluate » and ¢
inside the domain using Eqs. (14) and (15), the serious
“boundary layer effect” appears [3], since a near singularity
occurs when the evaluation point is very near to a source
point. The results recovery on the boundary and inside the
domain must be performed in different ways. To circumvent
the “boundary layer effect” in the SHBNM, an adaptive face
integration scheme has been developed here for 3-D
potential problems.

3.1. Potentials and potential gradients on the boundary
in SHBNM

After solving Eq. (21), the unknowns g and 4 are ready

for use to calculate the potential 77 and normal flux 7 on
the boundary by using Eq. (10), respectively. For evaluating

the potential gradients on the boundary, we use the
following equation:

g m ny n q,

Oiifds, p=| ox,[0s, 0Ox,[ds, ox,[0s |{q,

it/ os, ox,[6s, ox,[ds, ox,[0s, ||q,

where g, are potential gradients; ox, [os, » k=1,2 are the

(26)

tangent vectors of the boundary surface; and ai/as, are
calculated by

N
ofds, = ®, 4, @7
I=1

in which @, are derivatives of MLS shape function.
3.2. Potentials and potential gradients at internal points
in SHBNM

The potential » and the flux ¢ at an internal point, P, are
evaluated by the traditional boundary integral equations as
follows:
au(Q, P)

u(P)= [UQ.PFQMr— [ = & Si(@)dr (28)
=Y [, U@ Pa@yr- Z [ U@. Pz oyar
panels ¥ a (O}
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= Q)dr
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Figure 2 Subdividing of a panel in parametric space.

where U(Q, P) is the fundamental solution with Q and P
being the field point and source point, respectively. ‘panels’
denotes the number of the panels which compose the whole
boundary. Since every panel is represented by a unit square
in parametric space, the integrals on each panel in Egs. (28)
and (29) can be easily computed. Here we develop an
adaptive scheme to compute these integrals on a panel. In
this scheme, the integrations are performed in the parametric

unit square. We first divide the unit square into four equal
quarters, (see Figure 2), then for each quarter, we calculate
the diagonal length, /, and the distance between the
evaluation point and the center of the quarter, d, in the
global coordinate system. If / is smaller than , this quarter
is taken as a regular integration patch, or it is further divided
into four sub-quarters, and the procedure goes on, until all
patches become regular. Finally, using Gaussian quadrature
for all patches, we can evaluate the integrals in Eqs. (28) and
(29) very accurately even when the evaluation point is very
close to the boundary. It should be pointed out that the
patches are not like the standard elements in the BEM and
FEM. They vary for different evaluation points and can be
easily constructed. This does not change the fact that the
hybrid boundary node method is a truly meshless method.

4. Numerical results

A quarter part of a hollow circular cylinder is modeled in
Figure 3. The inner and outer radii of the hollow cylinder are
Ry =10 and R, = 30, respectively. And the length L =10. The
Laplace equation V*x =0 is solved here. Dirichlet boundary
conditions are imposed at the cylindrical surfaces and
Neumann boundary conditions at the other surfaces,
corresponding to the following exact solutions:

u=x'+y* +z* -3yx* —=3xz* - 3z° (30)

Figure 3 Dimensions of the hollow cylinder.

For the purpose of error estimation and convergence
studies, a ‘global’ /, norm error, normalized by |u| is
max

defined as

e

IR

where |u| is the maximum value of w over N sample
max

points, the superscripts (¢) and () refer to the exact and

numerical solutions, respectively. Here we provide two error
indicators, one for the variables inside the domain and the
other for the variables on the boundary. The relative errors
of u and its x-derivative inside the domain, denoted by DM-
u and DM-q in the figures, are evaluated over 15 sample
points uniformly distributed from (7.1, 7.1, 5.0) to
(21,21,5.0) using Eq. (31); and the relative errors of v and ¢
on the surface, denoted by SF-u and SF-q in the figures, are
evaluated over 21 sample points uniformly spaced along a
arc (with R=20) on the left face (shown as dots in Figure 3).
In the following two sections, we use this example for
parameter and convergence studies. In all cases, unless



indicated otherwise, the size of the local domain (radius »))
for each node is chosen as 0.754 in singular computations
and 1.54 in regular computations. The parameter ¢, in Eq.
(11) is taken to be such that r, /c, is constant and equal to

1.0. The scale factor SF in Eq. (24) is assumed to be 3.0. To
carry out the integration in Eq. (17), each of these local
surfaces, I, are mapped into a unit circle in the parametric

space. The unit circle is divided into 8 parts, 2 segments in
radial direction and 4 in circumferential direction. In each
part, 5x5 Gauss points are used.

4.1 Parameter study

In this subsection, we study the optimal values of free
parameters in SHBNM and RHBNM. There are many free
parameters in the formulations of meshless methods, for
example, the sub-domain radius r, in RHBNM, SHBNM and
the meshless local Petrov-Galerkin (MLPG) method [6]. The
optimal values of these parameters were not theoretically
determined, but suggested by empirical computations in the
literature. So investigating how these parameters influence
the performance of a meshless method is of critical
importance. The sub-domain radius in SHBNM and
RHBNM is firstly studied here. In the study, 1974 uniformly
distributed boundary nodes are wused in SHBNM
computations, and 504 nodes in RHBNM computations.

Computations are performed for various sub-domain radii, r,.

Relative errors for various sub-domain radii for SHBNM are
presented in Figure 4 and for RHBNM in Figure 5. Note that
the Ur, do not cover the whole bounding surface when

r, £0.5h (where h is the nearest distance between the
neighbouring nodes), and the [, will be overlapped when
r, 20.7h. Figure 4 shows that results from SHBNM are in
all case accurate no matter whether T, are overlapped, or
even uncover the body’s boundary. The optimal value for r,
is between 0.75 h and 0.85 A. It is worth noting that r,
should be smaller than # in SHBNM, so that each sub-
domain includes one node only, while in RHBNM there is
no such limitation. This is because there is no singularity in

RHBNM. Figure 5 demonstrates that the optimal value for r,
in RHBNM falls within the range from 1.54 to 24.
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Figure 4. Relative errors for various sub-domain radius, r;:
singular formulations.

The scale factor SF in Eq. (24), plays a key role in the
successful implementation of RHBNM. The relative errors
for various SF in RHBNM computations are presented in
Figure 6. It is seen that the relative errors as functions of SF
are not stable, although results are accurate when SF >2.0.
The optimal value of SF is 7.0. As mentioned before, a large

value of SF may lead to ill-conditioned equations and hence
unstable results. Further computations show that the optimal
value is independent of boundary condition, while strongly
dependent on the domain geometry and nodes distribution.
This parameter-dependence is a main drawback of RHBNM.
To guarantee the stability, therefore, in this paper, we do not
use the optimal value of SF, but instead SF=3.0. This value
is chosen under a criterion that the SF should be as small as
possible in case it gives acceptable results.
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regular formulations (SF=3.0).

-5 4 .-
o 2 4 6 8 10 12 14
Scale factor, SF
Figure 6. Relative errors for various scale factor, SF.

<204 .
28] T e
BT RS e
2 ~
© s
g;'-35 .
~ 40 O D'M-u"-
e DMq
<5 s sFu ]
s0] . | —v—SF-q |
01 02 03 04
Log,,(h)
Figure 7. Convergence rates: singular formulations.
T
28 T
PP}
3.0 .- - e
g L]
?;"-35 - ¢
=0 . DMu ']
e DM.q;
45 [ - | —&—SFu i
~ (.Y _SFa
50 v v v
01 0.2 03 0.4
Log,,(h)

Figure 8. Convergence rates: regular formulations.
4.2 Convergence study
To study the convergence of the SHBNM and RHBNM,



the same problem in previous section is solved using three
nodes arrangements: (a) 504 nodes, (b) 1118 nodes and (c)
1974 nodes uniformly distributed on the whole boundary. In
RHBNM computations, a value of 3.0 is chosen for the scale
factor SF. The relative errors for each nodes arrangement in
SHBNM and RHBNM computations are presented in Figure
7 and Figure 8, respectively. In Figure 7 and Figure 8, 4 is
the average distance between the neighbouring nodes. From
Figure 7 and Figure 8, it is found that SHBNM processes
much better convergence rate than RHBNM. The RHBNM
can achieve high accuracy, but it is not very stable.

4.3 Applicability to thin structures

Thin structures are commonly used in engineering. The
applicability of the RHBNM to thin structures has been
verified by 2-D elasticity problems [8]. It was found that the
RHBNM could be readily applied to thin structures with
high accuracy. Here we verify the applicability of RHBNM
and SHBNM to 3-D potential analysis of thin structures.

A cube with a spherical cavity centered is considered. The
cube is of side length L =10. The Laplace equation V2y =0
is again considered here. Dirichlet and Neumann boundary
conditions are imposed on the surfaces of the sphere and the
cube, respectively, corresponding to Eq. (30). 20x20 nodes
are uniformly spaced on each of the six faces of the cube,
and 538 nodes on the surface of the sphere. The relative
errors of potential and flux are evaluated over 21 sample
points uniformly spaced at a straight segment from (1.15,
1.15, 1.15) to (5, S, 5) using Eq. (31).

In this verification, we hold the dimensions of the cube
constant while let the radius of cavity sphere vary in the
range of 4.0< R<4.9999. When the radius of the sphere
approaches 5.0, the thickness at the centers of the six faces
of the cube becomes nearly zero. This setup, therefore,
provides a model which can be categorized as a non-uniform
thin shell, a thick shell and even a bulky solid, according to
the values of R. SHBNM and RHBNM computations have
been performed for various values of R. In RHBNM
computations, SF is taken to be 3.0. The relative errors for
different R in SHBNM and RHBNM computations are
presented in Table 1 and 2, respectively.

Table 1. Relative errors for different values of R in SHBNM.

R 4.8 4.9 4.99 4999  4.9999

Error-u (%) 0.0524  0.259 1.108 23.43 fail
Error-q (%) 0.714 1.185 7.346 141.8 fail

Table 2. Relative errors for different values of R in RHBNM.

R 4.8 49 4.99 4999 49999
E‘(S,Z’)‘“ 0.01010 0.00885 0.00806 0.00800 0.00800
E';f,‘/:')'q 0.04259 0.04262 0.04257 0.04251 0.04250

Results demonstrate that the accuracy of SHBNM
decreases when R approaches to 5.0. And when R=4.999,
SHBNM get wrong results, and degenerate at R=4.9999.
RHBNM, however, achieves very high accuracy in the
whole range of values of R. Moreover, further RHBNM
computation has been performed for R=5.0. It is found that

results are the same as the case that R=4.9999.

5. Concluding remarks

SHBNM and RHBNM have been compared in several
aspects in this paper. Both the methods have advantages and
disadvantages. RHBNM is suitable for solving structures of
simple and regular shapes. For such kind of structures,
RHBNM can achieve very high accuracy even with a small
number of nodes. One of the main disadvantages of
RHBNM is its low convergence rate and instability. The
accuracy is strongly dependent on the scale factor SF.
SHBNM, on the other hand, is stable and possesses higher
convergence rate than RHBNM.

The applicability of RHBNM and SHBNM to analysis of
thin structures has also been studied. Results clearly
demonstrate that RHBNM can solve thin structure problems
of simple and regular shapes with high accuracy, even when
the thickness to length ratio of the structure is in micro scale.
SHBNM, however, fails when the thickness to length ratio
reaches 107,

Combining RHBNM and SHBNM in multi-domain
analysis of complicated structures which contains very thin
sub-structures (nanotube based composites, for example) is a
promising topic of future research work.
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